Name:

Quiz 3-11 September 2019

Instructions. You have 15 minutes to complete this quiz. You may use your calculator. You may not use any other materials (e.g., notes, homework, books).

Problem	Weight	Score
1	1	
2	1	
3	2	
4	2	
Total		$/ 60$

For Problems 1 and 2, consider the discrete market model

$$
\begin{aligned}
D_{t} & =S_{t} \\
D_{t} & =22-3 P_{t} \\
S_{t} & =-2+P_{t-1}
\end{aligned}
$$

where at time t, D_{t} is the demand, S_{t} is the supply, and P_{t} is the price. In addition, suppose $P_{0}=8$. Using methods similar to those we used in class, we can rewrite this model as the following DS:

$$
P_{t+1}=-\frac{1}{3} P_{t}+8 \quad t=0,1,2, \ldots
$$

The particular solution is

$$
P_{t}=2\left(-\frac{1}{3}\right)^{t}+6 .
$$

Problem 1. Find the fixed point of the DS.

Problem 2. Is the fixed point attracting, repelling, or neither? Briefly explain.

For Problems 3 and 4, consider the DS

$$
A_{n+2}=5 A_{n+1}-6 A_{n}+8 \quad n=0,1,2, \ldots
$$

Problem 3. Find the general solution.

Problem 4. Find the particular solution satisfying the IC $A_{0}=1, A_{1}=2$.

Second order linear DS: $A_{n+2}=a A_{n+1}+b A_{n}+c, n=0,1,2, \ldots$

- Characteristic equation: $x^{2}=a x+b$ with roots r, s
- General solution:
- If $a+b \neq 1: \quad A_{n}=\left\{\begin{array}{ll}c_{1} r^{n}+c_{2} s^{n}+\frac{c}{1-a-b} & \text { if } r \neq s \\ \left(c_{1}+c_{2} n\right) r^{n}+\frac{c}{1-a-b} & \text { if } r=s\end{array} \quad\right.$ for any values of c_{1}, c_{2}
- If $a+b=1: \quad A_{n}=\left\{\begin{array}{ll}c_{1}(a-1)^{n}+c_{2}+\left(\frac{c}{2-a}\right) n & \text { if } a+b=1, a \neq 2 \\ c_{1}+c_{2} n+\left(\frac{c}{2}\right) n^{2} & \text { if } a=2, b=-1\end{array} \quad\right.$ for any values of c_{1}, c_{2}

